Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release synchronicity in a mouse model of diabetic cardiomyopathy.

نویسندگان

  • Tomas O Stølen
  • Morten Andre Høydal
  • Ole Johan Kemi
  • Daniele Catalucci
  • Marcello Ceci
  • Ellen Aasum
  • Terje Larsen
  • Natale Rolim
  • Gianluigi Condorelli
  • Godfrey L Smith
  • Ulrik Wisløff
چکیده

RATIONALE In the present study we explored the mechanisms behind excitation-contraction (EC) coupling defects in cardiomyocytes from mice with type-2 diabetes (db/db). OBJECTIVE We determined whether 13 weeks of aerobic interval training could restore cardiomyocyte Ca(2+) cycling and EC coupling. METHODS AND RESULTS Reduced contractility in cardiomyocytes isolated from sedentary db/db was associated with increased diastolic sarcoplasmic reticulum (SR)-Ca(2+) leak, reduced synchrony of Ca(2+) release, reduced transverse (T)-tubule density, and lower peak systolic and diastolic Ca(2+) and caffeine-induced Ca(2+) release. Additionally, the rate of SR Ca(2+) ATPase-mediated Ca(2+) uptake during diastole was reduced, whereas a faster recovery from caffeine-induced Ca(2+) release indicated increased Na(+)/Ca(2+)-exchanger activity. The increased SR-Ca(2+) leak was attributed to increased Ca(2+)-calmodulin-dependent protein kinase (CaMKIIdelta) phosphorylation, supported by the normalization of SR-Ca(2+) leak on inhibition of CaMKIIdelta (AIP). Exercise training restored contractile function associated with restored SR Ca(2+) release synchronicity, T-tubule density, twitch Ca(2+) amplitude, SR Ca(2+) ATPase and Na(+)/Ca(2+)-exchanger activities, and SR-Ca(2+) leak. The latter was associated with reduced phosphorylation of cytosolic CaMKIIdelta. Despite normal contractile function and Ca(2+) handling after the training period, phospholamban was hyperphosphorylated at Serine-16. Protein kinase A inhibition (H-89) in cardiomyocytes from the exercised db/db group abolished the differences in SR-Ca(2+) load when compared with the sedentary db/db mice. EC coupling changes were observed without changes in serum insulin or glucose levels, suggesting that the exercise training-induced effects are not via normalization of the diabetic condition. CONCLUSIONS These data demonstrate that aerobic interval training almost completely restored the contractile function of the diabetic cardiomyocyte to levels close to sedentary wild type.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interval Training Normalizes Cardiomyocyte Function, Diastolic Ca Control, and SR Ca Release Synchronicity in a Mouse Model of Diabetic Cardiomyopathy

Rationale: In the present study we explored the mechanisms behind excitation–contraction (EC) coupling defects in cardiomyocytes from mice with type-2 diabetes (db/db). Objective: We determined whether 13 weeks of aerobic interval training could restore cardiomyocyte Ca cycling and EC coupling. Methods and Results: Reduced contractility in cardiomyocytes isolated from sedentary db/db was associ...

متن کامل

Dilated Cardiomyopathy with Increased SR Ca2+ Loading Preceded by a Hypercontractile State and Diastolic Failure in the α1CTG Mouse

Mice over-expressing the alpha(1)_subunit (pore) of the L-type Ca2+ channel (alpha(1C)TG) by 4 months (mo) of age exhibit an enlarged heart, hypertrophied myocytes, increased Ca2+ current and Ca2+ transient amplitude, but a normal SR Ca2+ load. With advancing age (8-11 mo), some mice demonstrate advanced hypertrophy but are not in congestive heart failure (NFTG),while others evolve to frank dil...

متن کامل

Cardiac myofibrillar and sarcoplasmic reticulum function are not depressed in insulin-resistant JCR:LA- cp rats.

Depressed myofibrillar Ca2+-ATPase activity and sarcoplasmic reticulum (SR) Ca2+ uptake are important mechanisms that are responsible for the cardiac dysfunction exhibited by insulin-deficient (type I) diabetic animals. The JCR:LA- cp rat is a model for type II non-insulin-dependent diabetes mellitus (NIDDM). This rat is insulin resistant, obese, and has high levels of circulating glucose, chol...

متن کامل

Exercise training reverses myocardial dysfunction induced by CaMKIIδC overexpression by restoring Ca2+ homeostasis.

Several conditions of heart disease, including heart failure and diabetic cardiomyopathy, are associated with upregulation of cytosolic Ca(2+)/calmodulin-dependent protein kinase II (CaMKIIδC) activity. In the heart, CaMKIIδC isoform targets several proteins involved in intracellular Ca(2+) homeostasis. We hypothesized that high-intensity endurance training activates mechanisms that enable a re...

متن کامل

Improvement of cardiomyocyte function by in vivo hexarelin treatment in streptozotocin‐induced diabetic rats

Diabetic cardiomyopathy is characterized by diastolic and systolic cardiac dysfunction, yet no therapeutic drug to specifically treat it. Hexarelin has been demonstrated to improve heart function in various types of cardiomyopathy via its receptor GHS-R. This experiment aims to test the effect of hexarelin on cardiomyocytes under experimental diabetes. Streptozotocin (STZ, 65 mg/kg)-induced dia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 105 6  شماره 

صفحات  -

تاریخ انتشار 2009